Hyper-stable collective rankings
dc.authorid | LAINE, Jean/0000-0002-7305-7556 | |
dc.contributor.author | Laine, Jean | |
dc.date.accessioned | 2024-07-18T20:58:31Z | |
dc.date.available | 2024-07-18T20:58:31Z | |
dc.date.issued | 2015 | |
dc.department | Ä°stanbul Bilgi Ãœniversitesi | en_US |
dc.description.abstract | We introduce a new consistency property for social welfare functions (SWF), called hyper-stability. An SWF is hyper-stable if at any profile over finitely many alternatives where a weak order R is chosen, there exists a profile of linear orders over linear orders, called hyper-profile, at which only linearizations of R are ranked first by the SWF. Profiles induce hyper-profiles according to some minimal compatibility conditions. We provide sufficient conditions for hyper-stability, and we investigate hyper-stability for several Condorcet SWFs. An important conclusion is that there are non-dictatorial hyper-stable SWFs. (C) 2015 Elsevier B.V. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.mathsocsci.2015.06.002 | |
dc.identifier.endpage | 80 | en_US |
dc.identifier.issn | 0165-4896 | |
dc.identifier.issn | 1879-3118 | |
dc.identifier.scopus | 2-s2.0-84939424396 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 70 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.mathsocsci.2015.06.002 | |
dc.identifier.uri | https://hdl.handle.net/11411/8999 | |
dc.identifier.volume | 77 | en_US |
dc.identifier.wos | WOS:000361250900010 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.ispartof | Mathematical Social Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Hyper-stable collective rankings | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1