Bayesian Pathway Analysis of Cancer Microarray Data

dc.WoS.categoriesMultidisciplinary Sciencesen_US
dc.authorid0000-0002-9253-8152en_US
dc.contributor.authorOtu, Hasan H.
dc.contributor.authorÖzgur, Arzucan
dc.contributor.authorİşçi, Şenol
dc.contributor.authorKorucuoğlu, Melike
dc.date.accessioned2021-02-25T10:05:17Z
dc.date.available2021-02-25T10:05:17Z
dc.date.issued2014-07-18
dc.description.abstractHigh Throughput Biological Data (HTBD) requires detailed analysis methods and from a life science perspective, these analysis results make most sense when interpreted within the context of biological pathways. Bayesian Networks (BNs) capture both linear and nonlinear interactions and handle stochastic events in a probabilistic framework accounting for noise making them viable candidates for HTBD analysis. We have recently proposed an approach, called Bayesian Pathway Analysis (BPA), for analyzing HTBD using BNs in which known biological pathways are modeled as BNs and pathways that best explain the given HTBD are found. BPA uses the fold change information to obtain an input matrix to score each pathway modeled as a BN. Scoring is achieved using the Bayesian-Dirichlet Equivalent method and significance is assessed by randomization via bootstrapping of the columns of the input matrix. In this study, we improve on the BPA system by optimizing the steps involved in "Data Preprocessing and Discretization'', "Scoring'', "Significance Assessment'', and "Software and Web Application''. We tested the improved system on synthetic data sets and achieved over 98% accuracy in identifying the active pathways. The overall approach was applied on real cancer microarray data sets in order to investigate the pathways that are commonly active in different cancer types. We compared our findings on the real data sets with a relevant approach called the Signaling Pathway Impact Analysis (SPIA).en_US
dc.fullTextLevelFull Texten_US
dc.identifier.doi10.1371/journal.pone.0102803en_US
dc.identifier.issn1932-6203
dc.identifier.pmid25036210en_US
dc.identifier.urihttps://hdl.handle.net/11411/3304
dc.identifier.urihttps://doi.org/10.1371/journal.pone.0102803
dc.identifier.wosWOS:000339615200089en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakPubMeden_US
dc.issue7en_US
dc.language.isoenen_US
dc.nationalInternationalen_US
dc.numberofauthors4en_US
dc.publisherPublic Library Scienceen_US
dc.relation.ispartofPlos Oneen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCELL-ADHESION MOLECULEen_US
dc.subjectTUMOR-SUPPRESSOR P53en_US
dc.subjectGENE-SET APPROACHen_US
dc.subjectMETASTASISen_US
dc.subjectPROGRESSIONen_US
dc.subjectDISCOVERYen_US
dc.subjectGROWTHen_US
dc.subjectMODELen_US
dc.titleBayesian Pathway Analysis of Cancer Microarray Dataen_US
dc.typeArticleen_US
dc.volume9en_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Otu 2014.pdf
Boyut:
258.89 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: