Object Detection in Shelf Images with YOLO

dc.authoridVarlı, Songül/0000-0002-1786-6869|Melek, Ceren Gülra/0000-0002-5795-0838|Battini Sonmez, Elena/0000-0003-0090-984X
dc.authorwosidVarlı, Songül/AAZ-4672-2020
dc.authorwosidMelek, Ceren Gülra/ABA-8614-2021
dc.authorwosidBattini Sonmez, Elena/AAZ-6358-2021
dc.contributor.authorMelek, Ceren Gulra
dc.contributor.authorSonmez, Elena Battini
dc.contributor.authorAlbayrak, Songul
dc.date.accessioned2024-07-18T20:47:26Z
dc.date.available2024-07-18T20:47:26Z
dc.date.issued2019
dc.departmentİstanbul Bilgi Üniversitesien_US
dc.description18th IEEE International Conference on Smart Technologies (IEEE EUROCON) -- JUL 01-04, 2019 -- Novi Sad, SERBIAen_US
dc.description.abstractObject detection in shelf images can solve many problems in retails sales such as monitoring the number of products on the shelves, completing the missing products and matching the planogram continuously. This study aims to detect object in shelf images with deep learning algorithms. Firstly, object detection algorithms and datasets are examined in the literature. Then, experimental study is performed using Coca Cola images obtained from Imagenet and Grocery dataset with YOLO (You Only Look Once) algorithm. Results of the study are discussed from different sides such as number of classes, threshold values and numder of iteration.en_US
dc.description.sponsorshipIEEE,IEEE Reg 8,IEEE Serbia & Montenegro Sect,Univ Neoplantensisen_US
dc.identifier.doi10.1109/eurocon.2019.8861817
dc.identifier.isbn978-1-5386-9301-8
dc.identifier.urihttps://doi.org/10.1109/eurocon.2019.8861817
dc.identifier.urihttps://hdl.handle.net/11411/7776
dc.identifier.wosWOS:000556109600070en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofProceedings of 18th International Conference on Smart Technologies (Ieee Eurocon 2019)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectObject Detectionen_US
dc.subjectProduct Recognitionen_US
dc.subjectYoloen_US
dc.titleObject Detection in Shelf Images with YOLOen_US
dc.typeConference Objecten_US

Dosyalar