Electromagnetically actuated 3D-printed tunable optical slit device

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Optica Publishing Group

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper presents the design, manufacturing, and characterization of a three-dimensional (3D)-printed and electromagnetically actuated adjustable optical slit structure. The device comprises magnet-attached slits connected to the main frame via two springs controlled by external coils. To analyze the forces acting on the springs and simulate the mechanical behavior of the device, we developed both analytical and finite-element models. After fabricating the device using fused deposition, we conducted a series of tests to evaluate its performance. These tests included (1) analyzing the opacity of the slit blade as a function of its thickness, (2) measuring the temperature increase resulting from the power applied to the coils to determine the operable range of the structure, and (3) evaluating the hysteresis, repeatability, and resolution (minimum step) of the device. The experimental works were crucial to assessing the device's practicality and optimizing its performance for specific applications, which reveals a maximum slit width of similar to 450 mu m, with similar to 6.4 mu m step size within this study. Overall, our developed slit device has the potential to be useful in various optics-related laboratories due to its compatibility with conventional 1-inch (25.4 mm) diameter optomechanical mounts, compact form, low power consumption, and rapid prototyping capability with hybrid materials in a cost-friendly fashion, owing to the 3D-printing technology. We discuss an application where the adjustable slit is employed in a combined laser-scanning microscope and a spectrometer, highlighting its versatility and potential for the future. (c) 2023 Optica Publishing Group

Açıklama

Anahtar Kelimeler

Mems, Fabrication

Kaynak

Applied Optics

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

62

Sayı

19

Künye